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PREFACE

This report, prepared by Greqory_B. Baecher of NEXUS Associates, Wayland,
Massachusetts, with assistance from D. DeGroot, and C. Erikson, under Contract
DACW39-83-M-0067, provides details for the statistical analysis of geotechnical
engineering aspects of new dam projects. It was part of work done by the US
Army Engineer Waterways Experiment Station (WES) in the Civil Works
Investigation Study (CWIS) sponsored by the Office, Chief of Engineers, US
Army. This study was conducted during the period October 1983 to September
1985 under CWIS Work Unit 32221, entitled "Probabilistic Methods in Soil
Mechanics.” Mr. Richard Davidson was the OCE Technical Monitor.

This report is an introduction to practical techniques of uncertainty or
error analysis for use in geotechnical engineering. The intended audience is
the practicing geotechnical engineer with little or no background in
probability theory or statistics. A companion report, "Statistical Analysis of
Geotehcnical Data®™ (Contract Report GL-87-1), has been prepared under the same
contract. A third report, entitled "Statistical Quality Control of Engineered
Embankments” (Contract Report GL-87-2), has also been prepared but is inde-
pendent in content.

Ms. Mary Ellen Hynes-Griffin, Earthquake Engineering and Geophysics
Division (EEGD), Geotechnical Laboratory (GL), WES, was the Contracting
Officer's Representative and WES Principal Investigator for CWIS Work Unit ?
32221, General supervision was provided by Dr. A. G. Franklin, Chief, EEGD,
and Dr. W. F. Marcuson III, Chief, GL. a
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COL Dwayne G. Lee, CE, was Commander and Director of WES during the

publication of this report. Dr. Robert W. Whalin was Technical Director. T
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ERROR ANALYSIS FOR GEOTECHNICAL ENGINEERING

PART I: INTRODUCTION

Background

Good engineering practice requires that the possible magnitude and
direction of errors in engineering performance calculations be systematicaly
evaluated. Traditionally, geotechnical engineers have used sensitivity
analysis to perform such evaluation. However, advances in geotechnical testing
and modeling allow benefits to be taken of the more advanced, quantitative
approaches to error analysis common in other branches of engineering. These
techniques provide an explicit procedure for assessing uncertainty and error in
engineering predictions and are easily tailored to the needs of geotechnical

engineering practice.

Purpose

The purpose of this report is to provide potential users of error analysis
methods in geotechnical engineering with a practical introduction to concepts,
definitions, and techniques. The report is not exhaustive, The intent of the
report is to provide sufficient detail to allow a reader already versed in
geotechnical engineering but not in probability or statistics to undertake
error analysis for routine problems encountered in geotechnical engineering
practice. This report complements materials presented in "Statistical Analysis

of Geotechnical Data," Contract Report GL-87-1, and presumes familiarity with

statistical representations of soil parameter estimz 28 up to the level of that

companion report.




General Description of Error Analysis

The general approach to error analysis involves three phases: (a)
identification of possible sources of error, (b) assesament of the magnitude of
error possibly contributed by each source, and (c) determination of the
influence of each source of error on calculated results. The product of an
error analysis is a quantified statement of the confidence to be placed on
predictions of a structure’s performance which result from engineering
calculations. This statement of confidence represents the cumulative effect of
the uncertainties inherent to data collection and interpretation, and

engineering modeling.

Report Organization

This report is organized in five sections, Following the introduction,
Section 11 describes the sourses of error and uncertainty in geotechnical
analysis. Part III presents mathematical techniques for calculating the
effects of those errors and uncertainties on predictions of facility
performance. Part IV introduces the concept of a reliability index to provide
a single measure of safety incorporating both the best estimate of factor of
safety and the potential error in the best estimate. Finally, Part V discusses

the use of risk analysis in making geotechnical engineering design decisions.




PART II: SOURCES OF ERROR IN GEOTECHNICAL ANALYsIS?

Many uncertainties affect geotechnical predictions. Some can be quantified,
some not. In an approximate way these uncertainties can be divided into five
main groups:

Site conditions,

Loads,

Model inaccuracies,

Construction and quality control problems, and
Omissions and gross errors.

The most important for engineering analysis are the first three. Site
condition, loads, and models appear in calculations, and the uncertainties
associated with them are quantifiable. In contrast, uncertainties caused by
construction or quality control problems and by omissions or errors do not
appear in calculations, and they are seldom quantifiable. These uncertainties
are accomodated in other ways, as for example, by quality assurance or by

design checking.

Error in Geotechnical Calculations

If attention is restricted to geotechnical aspects of calculations, the
principal uncertainties that must be dealt with are site conditions and
geotechnical models, and a further and more specific subdivision of sources of
errors is possible. 'This leads to four sources which are the focus of error
analysis:

17« Soil variability.

2. Measurement noise.

3. Measurement and model bias.
4. Statistical error due to limited measurements.

t+ Part II summarizes background materials from the companion report,
"Statistical Analysis of Geotechnical Data," (Contract Report GL-87-1).
Readers conversant with that report may wish to skip forward to Part III.
Readers desiring further discussion of the material in Part II are referred to
the companion report.

10




These are the sources of uncertainty which affect calculated predictions. The
first two, soil variability and measurement noise, appear as data scatter (Fig.
1). The latter two, measurement or model bias and statistical error, cause

gsystematic error in predictions.

Data Scatter

The scatter among geotechnical measurements is usually large. This scatter
reflects two things: (a) real variability within a soil deposit and (b) random
measurement error or 'noise'. A major benefit of statistical analysis is the
ability to separate real variability from noise, and thereby lessen the
magnitude of data scatter and reduce uncertainty.

In any real soil deposit, engineering properties vary somewhat from point
to point, even within a stratum or zone that otherwise appears uniform. This
real or spatial variation leads to differences in the way individual elements
of a soil deposit behave. Unlike differences in goil properties among strata
or zones, this form of spatial variation is not usually accounted for
deterministically in a soil model. As a result, it causes uncertainty in
predictions of how individual elements of the soil mass perform.

Random measurement error in contrast to real soil variability is
extraneous ‘'noise' in soil property measurements. It is caused by operator or
instrumental variations from one test to the next. It does not reflect real
variations in soil properties, except possibly on a very small scale (e.qg.,
shell fragments or pebbles that distort test results). Nevertheless, unless
steps are taken to assess the magnitude and importance of random measurement

error, it cannot be distinguished from real variation in soil properties.

11




Thus, noise increases the uncertainty in soil properties estimates and leads to

greater conservatism in design than would otherwise be necessary.

Systematic Error

Systematic error is bias. If a systematic error of, say, 10% in some soil
property is made at one location, the same 10% error is made everywhere. The
distinction between spatial variation and systematic error is important. The
uncertainties caused by these two sources affect engineering calculations in
different ways. For example, uncertainties due to gpatial variation lead to a
high likelihood of some fraction of a facility performing inadequately.
Uncertainties due to systematic error, on the other hand, lead to a small
likelihood of the entire structure performing inadequately.

In soil property estimation, systematic error is caused in two ways: (a)
bias in measurement techniques and the models used to interpret measurements,
and (b) statistical estimation error. Measurement and model bias is common in
geotechnical engineering. It is caused by such things as soil disturbance, or
by a difference between how a property is measured and how a structure imposes
loads, or by simplifications in how soil behavior is modelled. Statistical

bias is also common. It is caused by limited numbers of data.

Combining The Sources of Uncertainty

Together, data scatter and systematic error constitute the major
uncertainties of geotechnical calculations. However, the effects of these
components differ, as do the way each propagates through an engineering model.
The most important concept of error analysis has nothing to do with

mathematics, it has to do with separating these gsources of uncertainty.

12




Error analysis is based on, (a) separating the sources of error in
geotechnical predictions, (b) analyzing the individual effect of each source of
error on an engineering prediction, and (c¢) combining the effects of each
source of error to obtain the overall reliability of a prediction. Error
analysis treats calculations and engineering models. It is not ‘probabilistic
design;' it is more akin to quality control. The result of error analysis is a
reliability index which summarizes the overall confidence that can reasonably
be placed in an engineering calculation,

Fig. 2 shows how the procedure is used. At the beginning, statistical
methods are used to estimate the four components of uncertainty from laboratory
tests, field data, and various geotechnical considerations. These components
are combined in a design profile used as input for modeling. 1In contrast to
traditional methods, this design profile is not a conservative estimate of soil
properties, but a ‘'best' estimate. Uncertainty is accomodated by specifying
standard deviation envelopes on the profile. The best estimate profile is used
as input to the geotechnical model to obtain a best estimate of facility
performance, for example, a best estimate of factor of safety, F. The
envelopes expressed as standard deviations are propogated through the model to
obtain a corresponding envelope or standard deviation on the prediction, e.qg.,
a standard deviation on F, The mean and standard deviation of the prediction
are combined in a so-called reliability index (Part IV) to provide a measure of

confidence.

Describing Uncertainty

Assessments of soil properties for most purposes are adequately expressed

by two numbers, (a) a best estimate, and (b) a measure of uncertainty. The




average value and the standard deviation, respectively, are used to express
these two attributes. When more than one property is estimated, another
attribute becomes important. This is the association between the uncertainties
in different parameter estimates. The correlation coefficient is used to

express this association.

Average = 'Best Estimate’

The average or mean of a set of measurements x = {Xy,+¢s,Xp} is denoted
my and defined as,

my = %2 X{ = “mean" . (1)

In efféct. the mean is the center of gravity of the measurements along the
x-axis., It is used as the best single-valued estimate of x.

The compaction control measurements shown in Fig. 3 show water content and
dengity data. In Fig. 4 the same data are displayed as histograms, showing the
number of measurements falling within specified intervals. The mean of the
water content data using Bqn. 1 is my = 0.45%; the mean of the compaction data

is my=98.7%.

Standard Deviation = ‘'Uncertainty’

The standard deviation of the measurements x is their variation with
respect to the mean, expressed as the square root of the sum-of-squared

variations,

= = " U]
8x / n_ll- T (x4 my)2 standard deviation (2)

14




In effect, the standard deviation is the root of the moment of inertia of the
data about the mean. s, measures the dispersion or uncertainty about the value
of x. The standard deviation of the data in Fig. 3 is calculated by Kqn. 2 to
be sy=1.3% for the water content data and sy=2.6% for the compaction data.

The proportional uncertainty or standard deviation normalized by the mean

is called the coefficient of variation and denoted Q,

Qx = 8y/my = “coefficient of variation® . (3)

The coefficients of variation of the data in Fig. 3 are Qu=1.3%/0.45%=2.89 for
water content, and (Qy=2.6%/98.7%20.03 for compacted density.

Just as in mechanics it is often convenient to deal with the moment of
inertia, rather than its square root, so, too, in analyzing uncertainty it is
often convenient to deal with the square of the standard deviation rather than

8y itself. The square of the standard deviation is called the variance,

Vx = 8x? = "variance" . (4)

Given the similarity of equations 1 and 2 to mechanical moments, the mean and
variance are often called the first and second (statistical) moments of the

uncertainty in x.

Correlation Coefficient

When dealing with two or more soil properties, uncertainties in estimates
may be associated with one another. That is, the uncertainty in one property

estimate may not be independent of the uncertainty in the other estimate.

15




Consider the problem of estimating ‘'cohesion' and ‘friction' parameters of a
Mohr-Coulomb strength envelope. If the slope of the envelope to a set of Mohr
circles is mistakenly estimated too steeply, then for the line to fit the bulk
of the data the intercept must be made too low. The reverse is true if the
slope is estimated too flat. Thus, uncertainties about the slope and about the
intercept are not independent, they relate to one another.

The correlation coefficient for paired data x,y = { (Xq,¥1), eee, (Xp,¥pn) }

is denoted ryy, and defined as,

x) (A

p = "correlation coefficient” . (5)
y

Ixy = T (

In effect, the correlation coefficient is equivalent to a normalized product
moment of inertia in solid mechanics. It expresses the degree to which two
parameters vary together. The correlation coefficient is non-dimensional
because deviations of x and y from their respective means are measured in
units of the respective gtandard deviations.

The value of Ixy may vary from +1 to =1, Exy=+1 implies a strict linear
relation with a positive slope, perfect correlation. Ixy=~1 implies a strict
linear relation with a negative slope, perfect inverse correlation. Ixy=0
implies no association at all, independence. Fig. S shows scatter plots with
various ry, values.

The corresponding dimensional form of Bqn 5, that is, using the absolute

deviations of x and y rather than normalized deviations, is called the

covariance and denoted,




Cxy = ;%5 L (x4 - my)(yjy - my) = “covariance" . (6)

From the definitions of Eqns. 5 and 6,

- Sy . (7

Txy SxSy

Autocovariance

Thus far, the fact that soil properties are spatial variable has been
ignored. Soil properties have not only magnitude but also location. The
spatial quality of soils data has important implications for it both strongly
affects engineering predictions and increases the amount of information that
can be squeezed from a testing program. The salient aspects of spatial
variability from an error analysis view are analyzed using a statistical
concept called autocovariance.

In an approximate way, spatial variability of data can be summarized by
two measures: the variance of the data about their mean, and the waviness or
frequency content of the variability in space (Fig. 6). The longer the period
of this 'waviness' the further the data may be spatially extrapolated.
Autocorrelation is used to measure ‘waviness.’'

Autocovariance measures the statistical association between data of the
same type made at separate locations. For example, the properties of two
adjacent soil elements tend to be similar. If one is above average, the other

tends to be above average, too. They are associated. OConversely, the

¥
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properties of widely separated elements are not mecessarily similar. If one is
above average, the other may or may not be. They are not associated. This
association of properties in space can be measured by the correlation
coefficient of Eqn. 5 and is called autocorrelation because the data are all of
the same type.

For data xj, where i = the location of the measurement, the autocorrela-

tion of data separated by interval § is,

1 n

Ry (6) T;E:TTG; 1% (x3 = mx{ (X485 = my) ’ (8)

the sum taken over all pairs of data having separation §, their number being
ng. Hn. 8 applies to the case in which the mean of x is constant in space.
More general cases are considered in the companion report, "Statistical
Analysis of Geotechnical Data" (Contract Report GL-87-1). Autocovariance is
related to autocorrelation as covariance is to correlation. The
autocovaraiance of data at points separated by a distance § is,

Cx(8) = () I Gxiemg) (rpesemg) (9)

Autocorrelation expressed a function of separation distance § is said to be
the autocorrelation function, and autocovariance expressed as a function of
separation distance is said to be the autocovariance function.

Figure 7 shows the autocorrelation function for standard penetration test
blow count data measured in a silty hydraulic £ill. For convenience, the

autocorrelation or autocovariance function is often indexed by the distance at
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which it decays to 1/e of its original value, in which e is the base of the

natural logarithms. For Fig. 7, this distance is about 100 feet.

Estimating Uncertainty

This section considers specific procedures for quantifying the
uncertainties identified above. More detail is provided in the report,

"Statistical Analysis of Geotechnical Data" (Contract Report GL-87-1).

Data Scatter

The scatter in soil data reflects two things (spatial variability and
noise) but it is measured by a single parameter, the data variance, Vy.
Therefore, it is not possible to separate soil variability from measurement
error simply by inspection; another approach to estimating the fraction of data
scatter contributed by either of these two sources must be used. The most
convenient and accurate is through the autocovariance function. The
autocovariance function reflects the spatial structure of variability in a set
of data. This structure differs depending on how the scatter is divided
between spatial variability and measurement noise. Each component has a
characteristic signature in the autocovariance function.

As a good approximation, measurements taken in the laboratory or

field can be modelled as,

zZ=XxX+e, (10)

in which z is the measurement, x is the real soil property, and e is random
measurement error. After some algebra, the autocovariance function of the set
of measurements turns out to be related to the autocovariance functions of x

and e by,
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Cz(6) = Cy(6) + Cel6) (11)

The autocovariance of x equals Vy at §=0, and approaches 0 as § increases. The
autocovariance of e, on the other hand, equals Ve at §=0, but equals 0 for any
§#0, that is, it is a spike, This is due to the assumption--and empirical
observation--that noise is independent from one test to another. Thus, for §#0
the covariance of the e's is zero. Therefore, by extrapolating the observed
autocovariance function back to the origin, an estimate of V4 and Ve is
obtained. This is shown in Fig. 8. 1In this case the variance of the
measurement noise is about 50% of the data scatter. For other in situ
measurements and other soils, measurement error variances have been found to
contribute anywhere from 0 to as much as 70% of the data scatter (e.g.,

Baecher, Marr, Lin, and Consla, 1983).

Systematic Error

The principal sources of systematic error are statistical estimation
error, and measurement or model bias,

Systematic error due to statistical estimation of soil parameters is
calculated from statistical theory. The most significant of these errors is
in the mean soil property. As an approximation, although a robust one, the

variance of the statistical error in this mean is,
x

in which n is the number of measurements. Note, although random measurement

error can be eliminated from the data scatter variance to yield a reduced




uncertainty, it does contribute to statistical error. 1Its effect on
statistical error can only be lessened by making more measurements.

Statistical errors in the estimates of other parameters, for example, the
variance of soil properties, also exist and can be readily calculated; however,
in most cases they have only a second-order effect on predictions and may be
safely ignored.

The last of the major sources of uncertainty, measurement and model bias,
is the most difficult to estimate. Usually, the only way to do so is by
comparison of predicted with observed performance or by field-scale
experiments. This has been done by Bjerrum (1972) for field vane strengths of
normally consolidated clay, and has been attempted by other workers for other
measurements. Such an approach aggregates a large number of uncertainties or
biases together, including those due to inaccuracies of theory and method of
analysis. In other endeavors, such as assessing nuclear site safety,
measurement and model bias are sometimes subsumed under the name, model
validation.

In the case of Bjerrum's work, the joint effect of bias in the field vane
procedure and bias in 2D stability analysis based on modified Bishop method
leads to the correction factor shown in Fig. 9. The best estimate of this
correction factor, i, as a function of plasticity index is its mean, m,, given
plasticity index. The variation of back-calculated py's about the mean is
summarized in a variance V, which expresses the uncertainty in knowledge about

the bias term.

Autocovariance

This section considers a simple and often used approach to estimating

autocovariance, the moment estimate. More detailed discussion of the
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statistical aspects of estimating autocovariance is presented in DeGroot (1985)

and in “Statistical Analysis of Geotechnical Data" (Contract Report GL-87-1).
Consider the case of measurements at equally spaced intervals along a
line, as for example in a boring. Presume that the measurements x =

{Xy,4e¢,Xn} contain no measurement error. The observed autocovariance of the

measurements at separation § is,

Cy(8) = I (Xg-my) (Xq45~my) (13)

ng-1
in which ng = the number of pairs of data at separation distance § and the mean
my is assumed spatially constant. This is called the sample autocovariance.
The sample autocovariance is used to estimate the real autocovariance Cy(§) for
separation distance §.

In the general case the measurements are seldom uniformly spaced and, at
least in the horizontal plane, seldom lie on a line. For such situations Eqn.
13 can still be used, but with some alteration. The most common way to
accomodate nonuniformly placed measurements is by dividing separation distances
into bands, and then taking the averages of BEqn. 13 within those bands. This
introduce some bias into the estimate but for most engineering purposes it is

sufficiently accurate.

Design Profile

The total uncertainty in engineering properties at a point in the soil
profile reflects the combination of data scatter and systematic error. Por
modeling purposes it is convenient to draw a design profile of soil properties
vs. depth., About this profile are drawn two sets of standard deviation
envelopes. One set describes point to point variability. The other set

describes uncertainty in the mean.
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( uncertainty ) = ( soil + (statistical) measurement)
in x variability uncertainty uncertainty (14)
+ +
= gspatial + uncertainty (15)
variability in mean

As discussed in Part III, the contributions to uncertainty in a soil property
x add together through their respective variances. That is, the variance of x
is found by summing the variance of spatial variability and the variance in the

mean,

Vx,total = Vx,spatial + me ' (16)

in which Vy tota) = the total variance of the soil property x, estimated at a
point location, Vy,gpatial = the variance due to spatial variability of the
soil property, and Vpy= the variance due to uncertainty in the mean of x. The

variance due to spatial variability is

Vx,spatial = Vz-Ve (17)

in which V, = the variance of the data scatter (i.e., measurements,) and Ve =
the variance of the measurement noise. The variance of the uncertainty in the

mean of x is,

vhx = Vx,statistical + VB ’ (18)

in which Vx,gtatistical = the variance due to statistical error in the mean,

and Vg = the variance due to measurement bias.
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Since the contribution of random measurement error appears only in its
effect on statistical error, this means that V, in specific instances can be
considerably less than the data scatter variance V,.

Returning to the measurement model of BEqn. 10, but applying a measurement

bias correction (i.e., calibration) factor B,
z = Bx + e . (20)

The factor B is an unknown constant that influences the measurement of the
actual soil property x. As developed in the report "Statistical Analysis of
Geotechnical Data" (Contract Report GL-87-1), the variance of z is related to
the variances of B, x, and e by

2 2
Vz— mB in‘mx VB-O-Ve (21)

Solving for the variance of x
Ve = (1/mg2) (Vz=Ve) + my? Vg/mp2 ' (22)
= (1/mg2) (Vz=Ve) + my2 Qg2

in which vg is the uncertainty in the appropriate value of the bias correction
B. For example, for field vane data, Vg is found from the scatter of
calibration data of the type compiled by Bjerrum (1962). The first term in the
right-hand-gside (RHS) of Bqn. 22 is the contribution of spatial variation of
soil properties to uncertainty in x; the s?cond term is the contribution of

uncertainty about B to uncertainty in x. Since uncertainty about the proper
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value of B always increases the uncertainty in an estimate, whether in going
from X to z or z to x, its contribution is always positive.

The effect of statistical error in the mean my, due to limited numbers of
measurements, adds directly to the RHS of Bgn. 22, as sujgested by Eyns. 16

and 18. From Byn. 12 the variance of the statistical error in my is,

Vlnx = Vz/n = (Vx + v.e)/n . (23)

Note that, although measurement noise can be removed from the data scatter, it
still retains an effect on statistical uncertainty

The overall error in the estimate of soil properties at any point in the
soil mass is found by combining the individual contributions of soil

variability, measurement bias and statistical error to obtain,

uncertainty measurement
in soil | = spatial bias ) + ( statistical )  (24)
property x variability uncertainty uncertainty
. 2 2 2 (25)
VX = (1 /MB ) (VZ"Ve) + x QB + Vz/n

The first term on the RHS of BEgn. 25 is the uncertainty caused by scatter of
the data about a trend in space. The combined effect of the second and third

terms is the uncertainty on the trend itself.

Example: Field vane Strength Data

The field vane (FV) strength data of Fig. 10 were collected in 40 borings

along the axis of a proposed embankment. The strength profile for end of




W construction (i.e., undrained) conditions was estimated on the basis of the
t field vane data. From visual inspection the mean field vane strength in the

marine clay appears approximately constant with depth, below a weathered

;::'o.: crust. Data classified as in the crust were treated separately from lower
i\t
A
':::: data, while high strength outliers within the non-crust material were
. eliminated.

o The mean and variance of the FV data in the marine clay are shown in Table
s 1. The coefficient of variation of 20 to 30% is large although not exception-

ally so. BAnalysis of the spatial structure variability about a constant mean
Ty yields estimates of the vertical and horizontal correlation distances for the
,j'_:e marine clay of about 1m and 30m, Figs. 11 and 12. Extrapolating the autoco-

variances back to the origin yields an estimate of 20kPa2 for the noise (Fig
o 13). Note, to the extent that the apparent spike at r=0 is due to small scale
BUt) variability, rather than noise, the estimated "measurement error" from the

vertical and horizontal directions need not be the same. However, in the

st present case they appear to be.

Y,

) ,,

!-:} The statistical error is approximately,

J

' Vm = Vgz/40 = 1.66 kpPa? ' (19)
» X

S which assumes tests to be independent. Given the separation of the tests

relative to the autocovariance distances, this assumption seems satisfactory.

.'.,:_ Measurement bias for the profile derives from errors introduced by the FV
;:": device and simplified Bishop analysis. For this purpose, Bjerrum's (1972) FV
B0

< I correction factor, u, was used (Fig. 9). Bjerrum's y is found by comparing

LI

’:::': measured undrained strengths using the FV with undrained strengths
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i
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backcalculated from observed slope failures. For the marine clay (PI=20) at
the site, mp=1.0 and the uncertainty in y reflecting the scatter about the best
fitting curve of Fig. 9 was estimated using regression analysis to be Qu=0.075.
X Thus, having estimated each of the component variances of Eqn. 14 the
design profile can be developed. The average undrained strength with depth is
approximately constant, m,>34.5 kPa, and the variance is found by Bin. 14. The
Rah result is shown in Fig. 14. The innermost envelopes show + one standard

" deviation of the systematic uncertainty (i.e., error in the mean). The outer

envelopes show + one standard deviation of total uncertainty for soil

tf: properties at a point. 'The total uncertainty is the sum of spatial variation
:E{i plus uncertainty about the mean, calculated using Eqn. 16.

:.:{: Example: SPT Blow Count Data

f:;:;i The boring program at the site of a low earth dam consisted of

LAE )

‘r:*?‘ approximately 63 standard penetration test borings located along the dam axis
ﬁig: and along a section perpendicular to the axis at the spillway location (Fig.
::'SE' 15). Additional borings were concentrated in a zone along the axis between
"):‘ stations 27+50 and 37400 where deep solution activity was discovered in the
::i‘:: limestone foundation.

:§§§ An interpreted profile along the axis is shown in Figure. 16. The soil
’ conditions along the axis can be roughtly divided into three sections on the
',: basis of SPT blow counts: Station 4400 to 13+00, 17400 to 24450, and 25400 to
?

“::::: 32400. Blow count data for the three gections are shown in Figs. 17, 18, and
M

k 19; and summarized in Table 2.

::E;E' The average blow counts increase from low to high station across the dam
EE;.’EE axis. The soils underlying the right wing of the dam have very low N values.

(L0 Ul
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The blow count data in each section closely follow a Normal distribution of
relative frequency. This trend is exhibited in probability-grid plots, in
which Normal distributions of frequency plot as lines, but is less obvious
simply by inspection of the corresponding histograms. The coefficients of
variation in each section are approximately constant at 50%. The blow count
data were not corrected for overburden.

The spatial structure of the blow count data was investigated directly on
the raw blow counts and on detrended blow counts. The autocovariance function
for the non-detrended average blow counts in each boring is shown in Figure
20, estimated using Egn. 13.

The upper plot shows the mean estimates calculated as per Bjuation 19.

The lower plot shows variation about the mean estimate, represented as:

+« maximum

—
’

75th fractile

x + mean
- +« median

¢« 25th fractile

+« minimum

the value of Cy(§) at §=0 is the variance of the boring-averaged blow count
data across the site. From Fig. 20 the variance of average blow counts in each
boring is about 6.0 bpf2, and and the autocorrelation distance is about 350°'.

A corresponding autocovariace function for individual data at elevation
660 is shown in Figure 21. The variance of these data is 12.5 bpf2, and the
autocorrelation distance is about 200 to 250'. The strong spatial structure

in both cases is due to the trend of blowcounts along the embankment axis.
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Measurement noise in the data was estimated using the autocovariance
function. By extrapolating the sample autocovariance of z back to the origin
at 6=0 an estimate of both V, and Vo is made. An interesting finding from the
blow count data at the dam site is that the measurement error in the data
appears to be very small. This is surprising. SPT blow counts are widely
thought to be noisy measurements and have been shown elsewhere to have noise
components in excess of 50%. The small measurement noise in the present data
can be inferred from the autocovariannce function. There is essentially no
discernable spike at §=0, and thus the variance of the measurement error V,
would appear to be about zero.

The reason that measurement noise in these SPT data appears to be so low
may have to do with the looseness of the alluvium and the consequent low
average blow counts. A more detailed discussion of the statistical analysis of
these data is presented in the report "Uncertainty Analyses for Dam Projects,"
Final Report, Contract Report GL-87-4.

Systematic error in the blow count profile is normally caused both by
measurement bias and by statistical uncertainty. 1In the present case involving
blow count data there was little reason to suspect serious measurement bias.
The data are used directly in constructing a soil property profile, rather than
being translated into a more fundamental parameter such as strength or
deformability. Therefore, there is no transformation by which bias is
introduced. while field operations themselves may introduce bias in SPT data,
there was no reason to suspect such bias in the present case. As a result,
they were neglected.

Statistical error on the mean was estimated using Eqn. 12. Typically

there were about 20 blow count measurements at any one depth, given that the
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axis was divided into three zones. Obviously, by dividing the site into zones
a closer fit to the mean properties in each zone can be made, but at the same
time the number of data used to estimate the means goes down.

The results of the analysis of the blow count data are shown in Figures

22, 23, and 24, in which the mean profile and standard deviation envelopes are

denoted as:

mean
¢
-standard deviation of mean — +standard deviation of mean
mean plus spatial variation """l__;g___l""" mean plus spatial variation
+ +

t+ standard deviation of mean

The inner envelopes are * one standard deviation of the uncertainty in the mean
and the outer envelopes are t+ one standard deviation of the error in the mean
plus the spatial variation. Uncertainty in groundwater level is denoted by a

mean and ¢ one standard deviation of the spatial variation.

Use of the Design Profile

The design profile provides a means for summarizing the magnitudes of
potential error in the soil properties that are used as input to engineering
analyses. Importantly, it separates systematic errors in the mean from spatial
variations one location to another. In the next part of this report, the
design profile is used as quantitative input to a geotechnical analysis--~for
example, a slope stability calculation, or a settlement calculation--in order
to assess the effect of uncertainty on predicted factors of safety or another
prediction. 1In that assesament, the importance of systematic errors and

importance of spatial variations are very different.
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Table 1. Component Variances for Field vane Data in the Marine

Clay.

Component Variances for Undrained Strength Profile

Variance Component Marine Clay Lacustrine Clay
Mean, my 34.5 kPa 31.2 kPa
Variance Components:
Spatial, Vg 39.9 72.0
Measurement noise, Vg 26.4 0
Data scatter total, V, 66.3 kpa? 72.0
Statistical error, Vz/n 1.7 2.0
Measurement/Model Bias, Vg 5.3 21.9
Total Variance, Vy total 83.3 kPa2 .9 kpa?

(point=-to=-point)




Table 2. SPT Summary Statistics for Carters Project Rerequlation
Dam.

SPT SUMMARY STATISTICS FOR REREGULATION DAM FOUNDATION

mean standard coefficient length
section (bpf)} deviation of variation (feet)
{bpf)
Station 4400 to 13400 4.8 2.9 0.60 900
Station 17400 to 24+50 6.9 2.8 0.41 750
Station 25400 to 32+00 8.9 4.4 0.49 700
32




Table 3. Component Variances for Factor of Safety Calculation in
Embankment Stability Analysis.

Principal Uncertainties in Stability Calculation

Variance
Parameter Symbol Systematic Spatial TOTAL
Effective friction angle of fill o 3.0 4.0 °2
Density of fill YFILL 1.0 2.0 tem? )
Depth of dessicated crust Derust  0+036 1.0 m?
Depth to till Dtill 1.0 1.0 m?
Undrained strength of lacustrine clay cy(L) 24.9 99,7 kpa?

Undrained strength of marine clay cyu(M) 7.6 47.6 kpPa2
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Figure 1 -~ Sources of Error or Uncertainty
in Soil Property Estimates.
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Figure 6. Schematic Illustration of Variance and Autocorrelation
in Soil Property Data.
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PART III: ERROR PROPAGATION IN ENGINEERING CALCULATIONS

This section explains the concept of error propogation in engineering
calcuations and presents mathematical techniques for analyzing the magnitude of
uncertainty in predictions.

A number of mathematical methods for error analysis are described. The
most widely used of these methods is the first-order technique. This technique
is described in greater detail. Four other methods are described briefly.
These are point estimate techniques, response surface techniques, ajoint

sensitivity, and Monte Carlo simulation.

Concept of Error Propagation Analysis

Engineering analysis uses soil property estimates made from measurements
by incorporating them in models. These models are based on engineering
mechanics and relate soil properties, loads, and other aspects of a design to
predicted performance. Traditionally, point estimates of properties, loads,
and other conditions are entered into the model and point estimates of
performance are calculated. For example, to predict settlement of a footing on
sand, data are used to make a best estimate of soil properties. This best
estimate, perhaps modified to be conservative, is used as input to a settlement
formula (i.e., a model). A best estimate of settlement is calculated from the
formula as a function of load.

If errors have been made in estimating soil properties, then the
settlement predicted by the formula will also be in error. The error in input
is said to propagate through the model to cause an error in the output (Fig.
25). Sensitivity analysis is generally used to assess the effect of input

errors on output. In sensitivity analysis a number of calculations are made
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using various estimates of input soil properties. The variation in calculated
settlement caused by the variation in input soil properties indicates the
sensitivity of the prediction to potential error in the input soil properties.

Sensitivity analysis works well when one input parameter is involved and
when gspatial variability of soil properties is not important. When more than
one input parameter is uncertain or when spatial variability exerts a
significant influence, sensitivity analysis does not work well. In these more
complex situations sensitivity analysis provides no mechanism for considering
combinations of uncertainties. 1In such cases a systematic accounting of the
way errors in input translate to errors in output is needed. This systematic
accounting is error analysis.

With error analysis, all calculations are based on best estimates of input
parameters, avoiding conservatism as much as possible. The output of a
calculation is the corresponding best estimate of facility performance.
Uncertainty is incorporated using standard deviations and correlation
coefficients. The techniques of error analysis allow the effect of standard
deviations and correlation coefficients on input parameters to be translated to
corresponding standard deviations and correlation coefficients on output (i.e.,
performance predictions). These standard deviations and correlation
coefficients express the uncertainty or potential error in a calculated
prediction. Using error analysis the joint result of a settlement calculation

is a best estimate of settlement and a standard deviation on settlement.

First-Order Technique

i

rn

3"q The most common approach to error propogation is the first-order

N

\. []

x” technique. This is also sometimes called the first-order second-moment method
s
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(FOSM). This technique is based on a linear approximation to the model which
relates soil properties to performance predictions, and hence is 'first-order'.
Because the technique uses only the means, standard deviations, and correlation

coefficients of the soil properties, it is said to be a 'second-moment’ method.

Consider the model relating an input soil parameter x to the performance

prediction y through some form of equation(s),
y = g(x) (26)

The model g(x) can be analytical, numerical, empirical, etc. This model can
be linearized by expanding the right hand side (RHS) in a Taylor's series
about some point x=n,

g(n) (x=n) g(n) (x=n)2

y = g(n) + I . 21 + eee (27)

If the RHS is truncated to the first two terms, an approximation of y as a

linear function of x is obtained.

Mean or Best Estimate Prediction

Applying probability theory to the truncated version of Eqn. 27, the

following result is obtained:

my glmy) - (28)

in which indicates first-order (i.e., linear) approximation. In words, the
mean or best estimate of the prediction y is the function of the mean or best

egtimate of the parameter x. This is the normal deterministic solution using
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the best-estimate (mean) soil property as input. If the prediction of y

depends on a set of parameters {Xy,...,xx} the equivalent form of BEgn. 28 is,

my ; g(mx’,-..,mxk) (29)

in which mX1 = the mean of x4, and so on.

Uncertainty (Standard Deviation) in Predictions

Again applying probability theory to Bgn. 27, a second result is obtained
concerning the relationship of the standard deviation of the prediction y to

the standard deviation of the input parameter x,

o d
sy = (-a%) Sx ( 303)
o dy, 2

In words, the standard deviation of the prediction y is the product of the
standard deviation of the parameter x and the derivative of y with respect to
X. The derivative of y with respect to x might be thought of as the
gsensitivity of y to changes in x. By squaring both sides a relationship is
obtained between the variance of y and the variance of x. Again, these results
are based on a linear approximation to g(x), but for most geotechnical problems
they are sufficiently accurate.

Plate 1 shows a simple calculation of bearing capacity for an unembedded

footing in which the only source of uncertainty considered is data scatter.




The data on

capacity is calculated using Terzaghi's bearing capacity factor N

friction angle are taken from laboratory tests, and bearing

Y For

illustration, this factor is related empirically to ¢' by the approximate

!

equation Ny =z 0.01e0+25¢' (scott, 1963). The mean value of bearing capacity is
found by substituting the mean value of tan ¢' in the empirical equation and
then into the bearing capacity formula. A more complete analysis replacing
Scott's formula by experimental data is given by Ingra and Baecher (1983).

If the prediction y depends on a set of parameters, the equivalent form

of Bgqn. 30 is,

: dg dg
Vg = L ¢ dxy ~dxj Cxy 1 (31)

in which cxi'xj = the covariance of x; and xj. When all the xj and xj are

independent of one another, each of the covariance terms for i#j is zero. The
covariances for i=j by definition are simply the variances of the xj (Cf.,

Eqns. 2 and 6). Thus, for this special but common case BEgqn. 31 reduces to,

27 892

Plate 2 shows a slope stability calculation for an embankment constructed on
soft clay. The field vane data for these foundation soils are shown in Fig.
10.

Two other special cases deserve note because they are common in practice
and lead to simple results. For the case in which y is a linear combination

of a set of independent parameters y = Lajxj, BEquation 32 becomes,
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e e -

{
¥ = 2
o Vy = L a® Vy, (33)
"
o For the case in which y is a power function of a set of independent parameters,
"
:ﬁ Y = m x;3i, Bquation 32 becomes, approximately,
‘¥
Y
t
) 1+ 92 = $(1 + aj2042) (34)
v,
-‘y"‘
¥
:j; which for small coefficients of variation (Qy<0.3) reduces to,
v:{;i 22y = 1aj2? Q2 (35)
Y4

Correlations Among Predictionst

The general form of Eqs. 20 and 21 when a set of predictions Y = {vy,

W
e
iju: «ee,¥n} is calculated from a set of soil properties X = {Xy, ++.,xk} is,
)
'.;Q: my = g(myg), and
i
;.l
N
16‘: Ly = GYILG,
’::‘: in which my = {my1,...,myh}, Ly = the covariance matrix of Y, and Iy is the
)
',::E covariance matrix of X. Ly has ijth term Cyi,yy and Iy has ijth term Cyj,xj.
'a".o
i G is the matrix of derivatives with ijth term dyj/dxj. The diagonal terms of
: Ly give the variances of ¥y,...,Yh, the off-diagonal terms give the covariances
't:i‘ of Yi,¥j. The correlation between yj and yj can be found from Byn. 7.
.
'. + This section is given for completeness, but may be skipped on first reading.
',n:: A more complete presentation of advanced topics in error analysis is given by

X Ditlevsen (1981).
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Size Effect Factor

The volume of soil influenced by an in situ test or contained in a
laboratory specimen is small compared with that influenced by a prototype
structure. To make predictions of how the prototype will perform, one needs to
estimate average properties within this larger representative volume of soil,
and the variability among the average properties of representative sized
volumes.

This is done by assuming the representative volume to be composed of a
large number of smaller elements, for example, each the size of a test
specimen. From the formulas in Part II the mean and standard deviation of the
properties of specimen sized elements are calculated, then using the spatial
structure described by the autocorrelation function, a mean and standard
deviation for the larger representative volumes is calculated. These
calculations are summarized in a size-effect factor, R, which in many cases can

be expressed by simple formulas or can be tabulated.

Spatial Averaging

The most important application of the size effect factor occurs in the
case where average properties within a large volume of soil control the
engineering performance of a facility.

Empirically, the variability of the average soil properties within small
elements of soil is larger than the variability of the average properties
within large elements. Within a small volume physical properties tend to be

more or less uniform throughout. Some individual elements may have greater

than average strength, say, while some may have less than average, but within
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any one element there is little variability. There is more variability among
the average properties of different elements than there is within a single

element. Within large volumes the opposite is true, there tends to be a

iy mixture of high and low properties. Thus, with small volumes the properties of
;: individual elements may vary sharply from the mean across the site, but with

, large volumes internal variations balance out and the average property from one
; large element to another differs very little. The mean of large volumes

i' remains the same as the mean of small volumes, but the standard deviation of

the average property from one large volume element to the next is small. There

.
; is more internal variability within large elements than there is among the
I
? average of one element to the next.
2
The extent of averaging of properties within a large volume of soil
; depends on the structure of the spatial variation of the soil properties. More
%{ precisely, the extent of averaging depends on the standard deviation of
| properties from point to point and on the autocorrelation function.
‘3 Consgider the one-dimensional problem of calculating the variability of
:, average SPT blow count among borings in a homogeneous soil. Plate 3 shows a
»
. set of gix boring logs. One N value is randomly chosen from each boring and
)
} the standard deviation among them is calculated. Then two N values in each
3 boring are randomly chosen, the average of the two for each boring is
:’ calculated, and the standard deviation of the boring averages taken. This
iv calculation with two values from each boring gives a somewhat smaller standard
i deviation than the calculation with only one N value. Oontinuing in the same
4 way, the greater the number of N values included in the average for each
i boring, the smaller the standard deviation of the boring-averaged N across the
é six borings.
.
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From Eqn. 12 one should be able to predict this decrease in standard
deviation as the number of terms in each boring average is increased. Namely,
the standard deviation of the boring averages ought to decreése by 1//k as the
number of N values in each boring, k, increases. This assumes that the blow
counts are mutually independent (i.e., their correlation coefficients are
zero). If the blow counts are (auto)correlated, then the standard deviation
will still decrease, although not as quickly as 1//Yk. The decrease of the
standard deviation of average blow count as the number of N values included in
each average increases is a manifestation of spatial averaging. The larger the
volume of soil (i.e., the greater the number of values in each average) the
more the individual fluctuations balance out.

The size effect factor, R, for the averaging case is defined as the ratio
of the variance of the average soil property within a large volume of soil to

the variance among test-gized volumes,

R = Vp/V§ (36)

in which Vmy, is the variance of the mean of the k blow count values,
mN=(1/k)INj. The ratio of variances rather than standard deviations is used
because it is more convenient for subsequent calculations. When data are
autocorrelated the size effect factor R decreases more slowly than 1//k in the
example above, because the data are somewhat correlated. That is, the data
show ‘wavy' variations about the spatial mean and therefore the balancing out
of spatial variations takes place more slowly.

Knowing the autocorrelation function, the exact shape of the relation of

R to k can be calculated. Let the average blow count within a boring be
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calculated as,

1 k
aN; * % 121"13 (37)
in which Njj is the ith blow count in boring j, and myy =average of the blow
counts in boring j. Presume that if a very large number of blow counts were
measured within the same stratum, the overall mean and standard deviation would
be my and sy. Then, if the blow counts within each boring were widely
spaced--and therefore independent of one another--the standard deviation of

myy 4cross the n borings j=!,...,n wuld be
SaN * Sn//k (318)

The average of the nyj over many borings would simply be my.

If more than k blow counts were sesasured in each boring, Rkeeping the total
length of each boring constant, fairly soon the assumption that the data are
independent wuld break iown. Indeed, ware 1t physically possible to make
neasuremens very close together, as the separation betweaen ssasurements
approached zer~ the correlation between the data would approach 1.0. Such
correlation can be accounted for mathematically using a mod1 7 ad version of
Egqn. 12 to Aderive the standard deviation of the mean »f 4 s+ ,f 1ata.* This
13 tedinous for di1screte data, but for the ~ontinuous ~ase which is really »f

more interest the mathemati~al results are uncompli~ated.

* Specifically, for jata X = !xy,...,%Xn - which exhibit ~orrelations as
reflected in a covaraince matrix Zxe Of which the 1)”‘ tern 19 A’f)t,.x]i, the
variance of the average my, = (1/n)7ix; Hver ji1fferent samples of n data 13 Va, -
I1/n'°_=‘)(“/ni, in which '1/n, = a vectnr »f 4imension n, esach elament H>f which
13 '/n (Snedecor and <nchran, 1964).




The continuous case considers the variability of the average of soil
properties which themselves vary continuously along a line or within a volume
of soil. This, for example, is the situation faced in predicting the
variability among footing settlements caused by variation in compression
modulus in foundation soils, or in predicting the variability in factor of
safety against instability along an embankment caused by variation in strength
parameters of the fill.

Fig. 26 shows the effect of spatial averaging in one dimension as a
function of the length over which the averaging takes place. The various
curves apply, respectively, to patterns of gpatial variability in soil
properties which are represented by various analytical models for the
autocovariance function, The horizontal axis shows the window length over
which averaging takes place, normalized to the scale parameter of the
autocovarance function. The vertical axis shows the size effect factor R.
Similar graphs for 2D and 3D averaging, and procedures for obtaining R in
special circumstances are given in the report, "Statistical Analysis of
wotechnical Data” (Contract Report GL-87-1).

A handy trick for continuum problems is to note that for many of the
covariance functions used in practice the one~dimensional size~-effect factor R
asymptotically decays as,

Vay 1

= 37
R V-x » L/264 (37a)

in which L 1s the depth over which the averaging takes place, and §, is the
autocorrelation distance. Por L/§, greater than about 2 this approximation

13 satisfactory.
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On the other hand, note that if the soil profile were divided into n
layers and the layers were taken as mutually independent, then by Eqn. 12 the

variance of the average my over all n layers would decay as,
R = 1/n (37b)

Therefore, if a continuous stratum were replaced by independent layers chosen
to have thickness L/2§,, the variance of the average my would be numerically
the same as if the autocorrelation structure had been applied to the continuum.
Thus, the correct solution can be obtained with greatly simplified computation.
A similar approximate approach can be used in calculating size effect factors

for 2-D and 3-D problems.

Spatial Extremes

The importance of spatial variability on calculated predictions depends
both on the volume of soil influenced and on the mode of performance. For
modes of performance which depend on average soil properties within a large
volume of soil, spatial variability partially averages out, as described above.
However, for modes which depend on worst condtions, for example sliding along a
discontinuity or internal erosion in a dam, spatial variability is accentuated.
In this latter case the size-effect factor may be greater than one, and an
alteration may be caused to the mean. These cases are outside the scope of the

present report.

Example: Embankment Stability

In the slope stability calculation of Plate 2 the influence of spatial
averaging apppears appears as the size effect factor R«0.7, but was not

discussed. Here we consider the influence of failure size.
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The example in Plate 2 comes from a large water resource development

involving low water-retaining dykes founded on soft clays. Three design cases

were analyzed, as shown in Figure 27, these were a 6m single-gtage dyke, a 12m

single-stage dyke, and a 24m two-stage dyke. In the two-stage construction the
foundation clays are allowed to consolidate for 12 months under a 12m fill
which is then raised to 24m the following year. The worst case or design
condition is end-of-construction, which is analyzed assuming undrained
conditions. For illustrative purposes, only the analysis of the 24m dyke is
presented here.

The principal uncertainties in the stability calculations are the
undrained strengths of the foundation clays, the engineering properties of the
embankment fill materials, and the geometry of the subsurface stratification.
These are shown in Table 3, with their respective systematic and spatial
variances.

The derivatives of factor of safety (F) with respect to the uncertain
parameters in step 2 were calculated numerically using Simplified Bishop
circular arc and Morgenstern-Price wedge-type failure geometries. For each
design geometry a base-case analysis used all parameters at their means. This
gives the best-estimate-F. For each parameter, additional calculations were
made to numerically determine the derivative of F near the mean. The
derivative was calculated as the ratio of change in F to change in input
parameter, AF/Ax, as shown in Plate 4.

The analysis of the first-stage 12m dyke shown in Plate 4 used circular
arc failure surfaces and Simplified Bishop analysis. The square of the

derivative dF/dx with respect to each principal uncertainty was multiplied by




the corresponding variances of Table 3 to obtain the contribution of each
uncertain input parameter to systematic and spatial uncertainty in the
calculated value of factor of safety F. These are shown as variance
contributions Vp. By BEqns. 14 and 25, the sum of these variance contributions
over all the input uncertainties gives the overall spatial and systematic
variances in the calculated value of F. From Plate 4, this total variance is
Vp=0.030, and the corresponding standard deviation is sp=0.17 (=/0.030) .

The total variance of 0.030 reflects the uncertainty in soil properties
from point to point. Actually, the critical failure wedge for the 25m base
case has a length of about 180m. Thus, some averaging of the point to point
variations of soil properties takes place over the failure surface. A size
effect factor R must be determined to correct for this averaging, and this
factor is multiplied by the spatial part of Vp to obtain an estimate of Vg for
the whole failure surface.

Following the procedure outlined in "Statistical Analysis of Geotechnical
Data" (Contract Report GL-87-1), numerical integration is used to determine
the approximate extent of spatial averaging over the circular failure surface
with 180m length. This led to the reduction factor R = 0.04 for the spatial
component of variability. That is, the critical failure surface is
sufficiently large that averaging across the surface reduces the point by point
spatial variation by about 95%. Thus, the variance of F for the critical

surface is,

Vfp = R Vp.gpatial *+ VF,systematic
= 0,04 (0,030-0.,012) + 0.012

= 0.013 . (38)
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This procedure is approximate. The variance composition relies on a
linearization, which for stability analyses introduces little error. In
addition, the analysis first minimizes F over trial failure surfaces and then
performs the error analysis on that critical F surface. More is said about the
choice of critical failure surface in Part IV.

Careful examination of Fig. 10 indicates that a relatively weak layer in
the foundation clays occurs just at about the boundary of the marine and
lacustrine clays. Plate 5 shows a calculation to check the stability of the
embankment against failures which might pass through this layer. This
calculation uses a wedge failure geometry in conjunction with the
Morgenstern-Price method of analysis. The result is of considerable interest
in that it illustrates the utility of an error analysis over simple factor of
safety results. Note that the best estimate factor of safety for a failure
wedge through the weak layer is only mp=1.24, as compared to mp=1.45 for the
analysis with uses average clay properties. On the other hand, because the
failure zone is well defined and because considerable, specific data were
collected in the wesak layer, the standard deviation associated with this
calculation is comparatively small. Thus the reliability of the calculated
result is actually greater than the corresponding averaged analysis. This

reliability is measurad by the reliability index 8 which is introduced in Part

Iv.

Other Msthods for Error Analysis

The approach to propogating uncertainty through an engineering model used
here is based on a first-order propogation of variance. This is a common
technique and has a variety of names in the various disciplines to which {t

finds application. It is sometimes called "first-order second-moment® (POSM)
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analysis, and sometimes simply "error analysis.”™ However, there are several
other ways to analyze the effect of input uncertainties on output
uncertainties. Among the more often encountered of these other methods in
civil engineering practice are the point estimate method, the adjoint method,
Monte Carlo simulation, and response surface techniques. The intent of this

section is to breifly introduce these other methods and provide an introductory

reference to their literature.

Point Estimate Method

The point estimate method, originally due to Rosenbleuth (1975), uses a
limi ted number of deterministic calculations made at well-chosen sets of input
parameter values to approximate the mean and standard deviation of a predicted
variable. For example, in the simplest case of Byn. 26 when both x and y are
scalars, three deterministic calculations are made. These use as input, (a)
the mean of x, (b) the mean plus one standard deviation of x, and (c) the mean
minus one standard deviation of x. The calculated results are used to estimate

a mean and standard deviation of y by the relations,

| g(nx+sx) + q(ux-sx)

m ~ <
2 . q(nx)

Y

(39)

| q(nx+sx) q(mx-sx) |

Similar techniques have been proposed for multivariate and correlated input.
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The point estimate method gives exact results when g(x) is linear. Thus,
in this particular case the point estimate and first-order technique give the
same answer. They do not necessarily give the same answer when g(x) is
nonlinear.

The point estimate method is convenient for many geotechnical uses,
although the goodness of its approximation appears not to have been widely
studied to date. Nonetheless, its use will probably become more widespread in

the future.

Response Surface Techniques

Response surface techniques are related both to variance propogation and
simulation, finding their most frequent use with models that are numerical,
possibly implicit, difficult to analytically propogate variance through, and
expensive to run. Response surfaces are in essence multivariate regression
analyses. Multiple runs of the model are made in the vicinity of the mean of
the input parameter values and a regression surface of chosen complexity is fit
to the output predictions obtained. This regression surface is presumably less
complicated than the model function itself, and yet can be taken as an
approximation to which variance propogation or other techniques are applied.

At the same time, many fewer runs of the model are made than with simulation,
and thus cost is reduced. Response surface approaches are often applied to
risk analysis problems associated with nuclear power and waste facilities, and

to structural reliability problems (McCormick, 1981).

Adjoint Sensitivity Analysis

Adjoint techniques evaluate the proportionate effect of a perturbation in
input parameters on the resulting perturbation in an output prediction. That

is, they lead to an evaluation of the quantity {(ij/Axi) xi/yj}, in which Yj
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is the jth component of the prediction and xj is the ith input parameter.
Adjoint techniques are conveniently applied to large numerical models
involving the solution of systems of linear equations. By manipulating the
linear algebra of such solutions, adjoint results can be obtained in the
course of computations. While adjoint techniques are usually used to obtain
sensitivies of a model rather than to perform quantitative uncertainty
analysis, the results can be used to numerically obtain derivatives, and thus

to provide the means for first-order variance propogation (Hadlock, 1984).

Monte Carlo Simulation

M.C. Simulation uses many repetitions of deterministic calculations in
which values of input parameters are randomly generated from specified
probability distributions. The result of simulation is a set of many
predictions of each output parameter which are treated as empirical data from
which statistical inferences of the means, variances, etc. of output
predictions can be made. An advantage of simulation is simplicity. It
requires none of the mathematics of variance propogation, adjoint analysis, and
related techniques. On the other hand, simulation has three important
limitations. It is expensive because the deteministic model must be run many
times. For example, at least several hundred trials are typically needed. It
requires not only means and variances of input parameters, but entire
probability distributions. These may be ambiguous or arbitraty. Finally, the
components of uncertainty are lumped together in simulations. Thus, differing
effects are hard to unravel. Nevertheless, simulation is an important tool
when a model is complicated, involves logical Lranching, or on other occasions
when variance propogation and related techniques cannot be used (Hammersley and

Handscomb, 1964).
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PLATE 1

B A AR | T I B R T AT S L R R T e I PR S T R R A R Xt T ',“!,‘;ﬁ"’§“;!.'éir’;‘-‘:’-""' LI

SUBJECT: Bearing capacity of a shallow footing.

PROBLEM
\AAAARAARAR2222:
b=5"
D=0'

111111711777777777777777777/777777

(a) BEST ESTIMATE (MEAN) OF BEARING CAPACITY

SOIL PROPERTIES

0.01e0425¢'

H

gy = (1/2) (120) (5) my
= (1/2) (120) (5) (85.6)
= 26.9 kip

(b) SPATIAL VARIABILITY OF BEARING CAPACITY

VNY = (dNY/d¢') V¢|

VinNy = (025)2 Vg
= (0.25)2(1.,140)2
= (0.29)2
. dN
Ny = GEno’? Vinwy
=  89.6)2 (0.29)2
= 26-0
. a
Vg 2 (G2 vy
= (17512005012 (26.0)2
= (7.8 kip)?

mgr = 36.4° (n=5)
Vgr = (1.14°)2

Y = 120 pcf
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PLATE 2

SUBJECT: 2-D slope stability analysis 1-berm case

Problem:
™ T r — v v
200
L RITICAL ARC FOR CASE 2,M*23m
80
NOTES:
ol () CASES 2 AND 3 USED MORIZONTAL GROUND
_ SURFACE AS DRAWN 1
£ r (2) CASE 4 USED DEFORMED X -SECTION TO ¢ 1
2 eob REFLECT CONSOLIDATION SETTLEMENTS |
H ' ]
o> b r—Xe 38m ZL -
Yei20-123m
120} i) » 56 m——e f-—; *a8m——s] 1
! 2 STAG
o 1 -
»12m -STAGD
1003 He6m I"z =
N A Fo '
~
CRITICAL FOR CASES 263 CRITICAL FOR CASE 4
.\ Vs ASES. [ER SE j
T T T Y OF VERTICAL DRAING A
n L N N P “ " .
200 @0 60 140 126 100 80 3 0 20 ° 20
X AXIS (m)

(a) BEST ESTIMATE (EXPECTED VALUE) OF FS AGAINST INSTABILITY,

FS = 1,84 [by modified Bishop method]

(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY

viFs] = (%—E 12 Vixg)

( oFS )
X4 shown on table,

calculated numerically.

uncertainty in soil parameters
assumed mutually independent.
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Page 2/2

SUBJECT: 2-D slope stability analysis 1-berm case

variance (AF/Ax§)2.V(x4)

Parame ter AFS/AX; Systematic TOTAL Systematic TOTAL
x10-4

%' 0.00221 3.0 4.0 nil nil
YFILL 0.068 1.0 2,0 46 92
Derust nil 0.036 1.0 nil nil
Deill 0.010 1.0 1.0 1 1
cu(lL) 0.0258 24.9 99.7 166 664
culM) 0.020 7.6 47.6 30 190

ViFs] 0.0243 0.0947

0.156 0.308
0.0243 + 0.0493
0.0736

SD[PS])
V3gelFS] @ R=0.7

(c) RELIABILITY INDEX

/0.0736




Wy PLATE 3

" SUBJECT: Spatial Averaging of SPT Blow Count Data

BORING # 1 2 3 4 5 6

) DEPTH

140 Average and standard deviation of average of n=1,2, and 8 data:

Yy n =1 my =
Sm
v n=2  my =
LA sm =

N wm
e ®
o
[/ ]
-]

N n =8 my =
by Sy =

o &
.
0N

2 g B B B P
v Y O 1t 2 3 4 5 6 7 8

», number of N-values averaged

VLY TN,
: !';-‘l'i Q.‘.!‘:‘_I”“l?‘! ;!‘;f""




PLATE 4 Page 1/2

SUBJECT: 2-D slope stability analysis
24m case, circular arc analysis

"oy Problem:
B 200} ) 4
v ITICAL ARC FOR CASE 2,023 o
: wo} 4
= NOTES: ]
* 6o b 1) CASES 2 AND 3 USED MORIZONTAL GROUND
4 - SURFACE AS DRAWN 1
£ F {2) CASE & USED DEFORMED X - SECTION TO L
L uo( REFLECT CONSOLIDATION SETTLEMENTS |
.ii . 3 - 30m I
:':‘ > X2 v-nzL-nzsm'
. i")' 7 < 7 p
At :\\\\" A ! WAL FOR cage .cml;c*‘m casE 4 //7/
- ST TTT T T T T T 77 7T T L ake? O westica, onants " 7 7]
:‘q:‘ 260 w0 w0 Mo o o 8o r— 20 ° 20
‘q;z' X AXIS (m)
'!"_t!
oy
-‘,"'i‘
s (a) BEST ESTIMATE (EXPECTED VALUE) OF FS AGAINST INSTABILITY, 24-m CASE
e -
e FS = 1.43 [by Simplified Bishop method]
Jk‘lﬁ ===
.oy
e
" .
(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY
. 3FS
FS] = — )2
( vIFs) § ( x4 ) Vx4l uncertainty in soil parameters
K assumed mutually independent.
( oFs )
Xy shown on table,

calculated numerically.
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Page 2/2

SUBJECT: 2-D slope stability analysis 24m case

Variance (APS/8x4)2.V(xy)
Parameter AFS/AXx4 Systematic TOTAL Systamatic TOTAL
x 10~4
Iintact Clay
(M) 0.0018 13.3 41.5 nil 1
(L) 0.012 26.3 88.5 38 127
Consolidated Clay
(M) 0.0021 52.7 111.5 2.3 4.9
(L) 0.009 62.0 124.4 S50 101
[ ] 0.0088 3.0 4.0 2 3
YPILL 0.055 1.0 2.0 30 61
v(PrSs] 0.0122 0.0298

SD(PS]
Vave(FS] @ R«0.04

0.111 0.173
0.0122 + 0.0012
0.0134

(c) RELIABILITY INDEX

PS - 1.0
B R eecccoces
Sps
1.43 - 1.0
/0.0134
= 3,68

On
"l,
v'vl“
iV

LX)
T, 81
3

.




PLATE 5 Page 1/2

SUBJECT: 2-D slope stability analysis
24m case, weakest layer 180m

DATE: REFERENCE:
....................
Problem
1
200~ B
" ~cmTkaL &R FOR CASE 2.me2Bm " - J
U - -
/ NOTES J
.- 11 CASES 2 AND B UBED MORMZONTAL SROUND
R SURFACE AS ORAWN . b
£ {2/ CASE & USED DEFOAMED X - SECTION TO K ¢
e REFLECT CONSOLIDATION SETTLEMENTS N
t oo d
. —ne 20w ! -
Y20~ (23m
20> * 5O M e —g ..'—.!
STAGE 2
v ey
In' e  STAGE 1 41
00 L L) L o
A
MTICAL FOR CASES 203 ~cmiical vom case o 7
_______ - o — R ——
.0+ A — ol 7
Tu.o -— LMY OF YERTICA, DRANS
20¢ - L 4 e 7 .3 w0c [ 4 [ 4 o« E 1) [+] t 3o
X ARIS 1»

(a) BEST ESTIMATE (EXPECTED VALUE) OF PS AGAINST INSTABILITY

FS = 1.24 [by Morgenstern Price Method]

(b) UNCERTAINTY (VARIANCE) IN PACTOR OF SAPETY

viFs] E ( Ixyg ) Vixyl uncertainty in soil parameters
assuned mutually independent.
aFs
( )
ax; 201308 rically.
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PLATE 5 Page 2/2

SUBJECT: 2-D slope stability analysis 25m case, weakest layer 180m

Parameter AFPS/AX; variance (AFS/Ax4) 2 oV(x4y)
Systematic TOTAL Systematic TOTAL
x 10=%
LN 0.005 3.0 4.0 1 1
YFILL 0.048 1.0 2.0 23 46
Derust 0.007 0.036 1.0 Nil Nil
cu(L) 0.028 Cov(B)aD .15 5.6 23 44
culM) 0.013 7.6 47.6 13 80
VIFS] 0.0060 0.071

SD{FS]
Vavel[FS] @ R=0.04

0.0775 0.131
0.0060 + 0.0022
0.0082

{(c) RELIABILITY INDEX

/0.0082

= 2.69

v 83
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INPUT
(Load)

Figure 25,

PARAMETERS
(Properties «—» Geometry)

MODEL OUTPUT
(Prediction)

Error Propagation Through the Model y = g(x).




EXPONENTIAL

SIZE EFFECT FACTOR, R

0 2 4 6 8 10 12

LENGTH / AUTOCORRELATION DISTANCE

Figure 26, Spatial Averaging in One-Dimension




v i
-
RITICAL ARC FOR CASE 2,M-23m r
-
- NOTES: 4
i (1) CASES 2 AND 3 USED HORIZONTAL GROUND
_ 160 SURFACE AS ORAWN ]
£ r (2) CASE 4 USED DEFORMED X - SECTION TO Y 1
2 ok REFLECT CONSOLIDATION SETTLEMENTS
< I 1
> } 4
-123m
120p Ly =56 jo——e | g * 4O M —
1°3em 2 STAGE 2
* s 7 ] ]
3rd
100 Jﬂl..m i o
'~ AL FO 7
Ny CRITICAL FOR CASES 283 cmT FOR CASE 4
— S — S — —— T ——— — —.————-——-_—.-J/
S
00?7/777/////4.&- I/,I.ILI“(&IV‘*QA./&MIIIIH
200 180 160 140 120 100 0 60 0 20 ) 20

X AXIS (m)

Figure 27, Design Cases for Habankment Stability Analysis.




PART IV: THE RELIABILITY INDEX

In traditional geotechnical analysis the adequacy of a design is expressed
N by a factor of safety, defined variously as the ratio of capacity to demand,

F = CaPacity (40)

demand

The factor of safety makes no allowance for uncertainty.

§' When performance is predicted by both a best estimate and a measure of
uncertainty, a more complete safety index can be used. One index which

;3' combines both best estimate and uncertainty is the ‘reliability index', 8. In

T essence, 8 measures the number of standard deviations separating the best

estimate of performance from some unacceptable or 'failure' value. Part IV of

this report defines the reliability index 8, shows its relationship to factor

i of safety F, and gives examples of its use.

i Definition of the Reliability Index 8

f b An error analysis translates the effect of uncertainties in engineering
properties to uncertainties on calculated results. Using any of the techniques

‘s of Part III--except Monte Carlo simulation--uncertainties in engineering

o properties are described simply by their means, standard deviations, and

* correlations with other properties. These means, standard deviations, and

correlations are translated to means, standard deviations, and correlations

for calculated predictions.

- Such a description of uncertainty contains more information than can be

' incorporated in a factor of safety, yet does not allow so-called probabilities

of failure to be determined (i.e., probabilities that the actual performance of
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Nyt a facility is inadequate campared to some defined limit state). Determining
probabilities of failure requires information on the distribution of
probability over the predicted performance y, and no such assumption is made.
) Instead, the mean and standard deviation of y are combined in an index, 8 that
describes reliability as the number of standard deviations seqarating the best

estimate of y from its defined failure value y,,

&::3 B = =¥=J¥2 . ereliability index" (41)
. b4
-S Lower values of 8 imply lower reliability. 820 means the best estimate of

., performance equals the failure criterion, that is my=Yf. B> means that my>YE,
because the standard deviation is always positive. Typical 8's for current

sy geotechnical design range from 2 to 4.

) The reliability index is a useful measure because it balances the safety

implied by a best estimate against the uncertainty in that estimate. Thus, 8

A can distinguish between, (i) a high mean factor of safety with correspondingly

'% high uncertainty, and (ii) a low mean factor of safety with correspondingly low

uncertainty. 1In Fig. 28, Design #1 has a higher mean factor of safety (F)

aSR than design #2, but also a larger standard deviation. Since the probability of
l'gﬁ

L}

n$§ inadequate performance is related to the area under the frequency distribution
L)

A

e to the left of F=1.0, although design #1 has a higher mean F it also has a

greater likelihood of performing inadequately. The reliability index captures
L this distinction.
The reliability index B is a direct measure of the reliability of a

¢, calculation with respect to facility performance. # measures the confidence
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one should have that errors in a calculation are small relative to the margin
of safety separating a best estimate from some design limit.

The reliability index B is not a statement of probability. However, in
some situations it is convenient to relate 8 to a nominal probability of
failure, pg, using a Normal (i.e., bell-shaped) distribution of uncertainty on
y (Fig. 29). For B8 less than 2 or 2.5, nominal pg is insensitive to the
assumed shapae of the distribution of probability over y; however, for 8 larger

than 2.5 nominal pg is sensitive to the distribution chosen.

Limitations of 8

The reliability index B defined by Bgn. 41 is useful but has limitations.
The most important limitations of B are,
1. B can be load path dependent.

2, B is not invarient to certain mechanically equivalent mathematical
transformations of the definition of failure.

Each of these limitations also applies to the factor of safety F.

The load-path dependence of 8 can be illustrated by considering the
bearing capacity of an unembedded footing subject to an inclined load (Fig.
30). The combinations of vertical load V and horizontal load H which define
the limiting conditions for loads on the footing form a curved envelope.
Combinations of V and H inside the envelope can be resisted by the footing;
combinations outside cannot.

Starting from initial load By, two possible load-paths to failure are, (1)
increasing the horizontal load H until the failure envelope is reached at Py,
and (2) increasing the vertical load V until the failure envelope is reached at

P2 For the horizontal load path the factor of safety is
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- H2
Fy W (42)

For the vertical load path the factor of safety is

V2
Fv V) (43)

Depending on the location of P, within the safe region, the factors of safety
Fy and Fy can be arbitrarily changed independent of one another. Only in
exceptional situations will Fy and Fy be the same. Exactly the same load-~path
dependence applies to the respective reliability indicies By for horizontal
loading and By for vertical loading.

The noninvariance of B can be illustrated by considering a rock block
sitting on an inclined slope with asperities (fig. 31). Depending on how the

forces are regsolved, the factor of safety against sliding can be stated as,

. _tan ¢ .
F1 tan( 9-1i) ! (44) l
or as,

- tan (¢+i)

Arbitrarily choosing parameter values, let 8=25° and i=5°, both known. Let the
best estimate of ¢ be m¢=40° and the standard deviation be s¢=3°. Then, the

mean factors of safety and B8's corresponding to BEqns. 44 and 45 become,

mF1 = 2,31 81 = 5.31 (46)
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sz = 2-‘4 82 = 5.08 (47)

Advantages of the Reliability Index 8

Error analysis of the type presented in this report is in essence a
replacement for traditional sensitivity analysis approaches to evaluating the
reliability of engineering calculations. The reliability index B is a
convenient single measure which combires the two results of an error analysis,
namely the best estimate and the standard deviation.

In practice, the reliability index 8 has important advantages for
engineering analysis and desigr.. First, it provides a traceable path through a
set of calculations by which uncertainties are accounted for. The principal
benefit of this traceable path is quality assurance. Second, it provides a
means for explicitly incorporating the extent of information gathering with the
reliability of an engineering prediction. The benefit of tying information to
reliability is that the quantitative basis of predictions can be demonstrated.
Third, it provides a means for increasing the consistency of design decisions.
The benefit is that the conservatism of design, reflected in design factors of
safety, can be balanced against the confidence of a prediction. Each of these

three capabilities expands the engineer's ability to produce a quality design.

Quality Assurance

Quality assurance is a must in civil engineering. Unlike many branches of
engineering, the civil engineer typically designs and builds a single copy of
his product. The concept of an acceptable failure rate, which is widespread in
manufacturing and electronics, is foreign to the dam designer or bridge
engineer. The means for assuring quality in engineering is explicitness.

Error analysis and B-values provide that explicitness by forming an accounting
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sheet for uncertainties.

Relation of Data to Confidences

Using factors of safety, the influence of 3i1te characterization iata on
reliability and on design factors of safety 13 1mplicit. There 1s no Juantita-
tive tie-in between information and confidence 1n performance pred: “tions, The
3 index provides a means for guantifying the effect of information on
confidence, in that information influences the standard Jdeviation of 3

prediction and thus 3.

Consistent Factors of Safety

As shown schematically in Fig. 28, the reliability of a predic-tion of
engineering performance is not campletely Jdescribed by F alone. A high mean
factor of safety combined with a high standard deviation may be a less reliable
prediction than a low mean F combined with a low standard Jdeviation. The
reliability index, 8, captures this distinction.

The choice of design factors of safety for Jdifferent -onditions can be
made consistent, in that the same level of reliability is implied, by setting
the corresponding reliability indices equal. As shown in F1g. 32, for two
design cases in which the coefficients of variation of calculated F's are 0.10
and 0.20, respectively, the 8's corresponding to expected design F's of 1.5 are

different:

Mean Factor of Safety

- - - . D - -y WP . . - - -

coefficient of variation

8 Qp=0 .10 Qp=0 . 20
1.50 1.18 1.43
2.00 1.25 1.67
3.00 1.43 2.50

1A % A 4V
. A‘wb«sv",v,‘t
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Mo ootain F's taplying consistent reliability, at say 8=2, the target values of
aean factor of safety would nave to be Jdifferent in the two cases. Thus, error

ana.ysis provides a vehicle for 1mproving internal consistency of criteria or

standaris for Jdesign.

Exampie: Bearing Capacity of a Shallow Footing

For the froting described 1n Plate 1, uncertainty in the soil friction
Ang.e aused by Jata scatter led to a best estimate (mean) of bearing capacity
2t Je.d x3f and a standard deviation of 7.8 ksf. If the design stress were 10

Xx3? What @ua:i be the reliability 1ndex 8 for the calculation? Applying Ejn.

Agv < Hdvo
-~ = "__—'——sqv'--'—'
26.9 ksf - 10 ksf (48)
7.8 ksf
= 2,2

Example: Footing Settlement on Sand

Plate 6 shows a settlement calculation for shallow footings on
appoximately ten meters of uniform wind-blown sand. The facility is an
industrial plant founded on a large number of footings. The site was
characterized by SPT borings, predictions of settlement were made based on the

N values, and settlements were subsequently measured.
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Calculating Footing Settlement

Footing settlement can be predicted by any of a number of equations. Peck

and Bazaara's equation is a modification of the Terzaghi and Peck envelope,

- (289) (2,2 1
o - (28 22 ol )

in which p is settlement (inches), Aq is allowable applied stress (TSF), my is
(vertically) averaged corrected blow count, and b is footing width (ft).
Water table elevation is ignored. The term involving D/b, where D=embedment
depth is a depth correction factor. In the present case D/b=0.5. For square
footings of design width b=10', the best estimate of p at the allowable stress

of 3TSF (6ksf) is shown in Plate 6.

Spatial Component of Settlement Uncertainty

The variance of p due to uncertainty in my is calculated by noting that p

is inversely proportional to my. Therefore, from Bin. 35,

Q, = Uy (50)
my is the average blow count within a depth b equal to the footing width of the
footing and thus its variance and coefficient of variation are less than those
of the point by point blow counts, N. For this site blow counts are taken
every 5 feet, thus the coefficient of variation of the vertically averaged blow
counts was Qmy=0.44. If the distinction between real soil variability and
measurement noise is ignored, the coefficient of variation of settlement p that

one would predict from the data scatter should be about 0.44. That is,

ignoring noise in the data one would expect the spatial variability among
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footing settlemtns to have Qp=0 .44. Alternately, Eqn. 30 could have been used
to find the same result with more effort.
In comparison, the observed values of total settlement for 268 footings at
Ly this site have a mean of about 0.35", and a standard deviation of 0.12". Thus,

Y the observed variability has a coefficient of variation Qp=0.34, less than one

might expect based on the scatter in the N-values.
s The discrepancy, of course, is caused by measurement noise, which must be
removed from the data scatter before an accurate estimate of spatial
variability in the footing settlements can be obtained. The noise content of |
the data is estimated from the autocovariance function (Fig. 33) to be about

50% of the data scatter variance. This means that,

il.{i: Rg0i1)2 = (Qgata)? (0.5) = (0.44)2(0.5)

,,t‘ (51)
v = (0.31)2

2 which is close to the Q,%0.34 observed in the settlements records.

:a, Systematic Component of Settlement Uncertainty

/ In addition to spatial variability, the limited number of borings causes
tooat

:;::: statistical error in the prediction of average settlement. With 50 borings
s

B L

‘:c:‘-: and hence 50 SPT measurements at any elevation, the statistical error in the
tig
l estimated mean blow count at any elevation in the upper levels is

iy

R vy = Vy/50 . (52)
il

‘ This reflects uncertainty on the average settlement of all the footings at the
r‘é

:':: site.

¥
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The gsettlement model itself introduces bias which differs from site to
site. For Eyn. 49 comparison data of predicted vs. observed settlements yield
a mean bias (Fig. 34) of mp=1.46 and a standard deviation of spg, = 1.32,
in which b=observed settlement/predicted settlement. Oorrecting the earlier

estimate for this model bias,
By’ = mpmg ' (53)

in which mye is the corrected mean settlement. The variance of the corrected

settlement is found using Eqn.32 as,

Vp 2 Vb mpz + me Vp (54)

The poor correlation of the settlement model to actual footing performance
introduces a large model error if data are unavailable for calibrating the
model to a particular site. This model error is difficult to divide into
scatter and systematic parts because data of the sort used to calibrate models
are mixtures from many sites and model tests. However, the calculations in
Plate 6 attest to the importance of model uncertainty in settlement
predictions.

In service, the footings were exposed only to 40 to 70% of the allowable
load used for predicting settlements. Also, footing dimension and embedments
varied. Therefore, the mean predicted settlement and the mean observed are
not comparable. However, because Bin. 49 is multiplicative, R should be

unaffected by these differences.
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Example: Final Consolidation Settlement

Javette (1983) applied a similar approach to the problem of consolidation
éettlement of San Francisco Bay Mud under a uniform surcharge. While his

ot analysis differs in notation and somewhat in form from the methods developed
here, in principle it is the same. For this illustration, however, Javette's
e analysis is slightly rearranged to fit the present format.
Fe In calculating the mean and standard deviation of total settlement at the
end of primary consolidation, Javette makes several assumptions: (1) unit
vy weights are known, (2) compression and recompression ratios are described by
e means, variances and covariances, and (3) the trend of overconsolidation (i.e.,
:;'.3, a function of maximum past pressure) with depth can be approximated by a smooth
mathematical curve. Then, settlement is calculated by dividing the Bay Mud
e stratum into k hypothetical layers with thickness twice the vertical

autocorrelation distance, and summing the settlement of each layer to obtain,

v
Ve k

.:t;j p = f log (Oym'/0vo') CRg,c + log (oyfe'/Ovm') CRe,r (55)
e

in which oyq', oym' and oyf' are the in situ vertical effective stress, maximum
“ﬁ.' past pressure, and final vertical effective stress, all in layer i,

) respectively; CRg,r is the recompression ratio, and CRg,c the virgin
compression ratio. The mean settlement is.obtained by substituting the means

of oym's CRg,r, and CRg,c into the equation, oy,' and gyf' being assumed known.

; The components of uncertainty adopted by Javette are shown in Table 4.
s Thus, the variance of end of primary settlement is calculated from Bgn. 31 as

o shown in Plate 7. The layer thicknegss are chosen using the trick described in
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Part III, so the variations of properties among layers can be taken as
independent and R=1.

To compare predicted standard deviations with the range of settlements
observed in the field, the rate of consolidation had to be incorporated in the
calculations. Some of the field measurements were taken at times prior to end
of primary compression, and some included secondary compression. For this
purpose the coefficient of consolidation c, was assumed known and the
coefficient of secondary compression was described by a mean and variance. In
fact, cy could also be described as an uncertain parameter, and in many
consolidation problems it is an important source of uncertainty. Javette,
reasoning on the basis that 95% of the area under a Normal (bell shaped)
distribution lies within #1.96 standard deviations of the mean, used *(1.96s;)
as a predicted range of settlement. This range is shown in Fig. 34 comparing

favorably with the field observations.
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Table 4: Variance Assumptions for 1D Settlement

Variance Component Contribution

Spatial variation =- equal to the data scatter of the
consolidation parameters Ce,cv Ce,xe

Measurement noise == unknown and neglected.

Systematic error -

statistical error in C¢ . and C¢,r
due to limited numbers of tests.

-= differences in the maximum past
pressure profile from one location
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PLATE 6

Page 1/3

SUBJECT: Calculation of footing settlement on sand.
PROBLEM
AqQ = 3 TSF SOIL PROPERTIES
AR AAARR222222)

B=10' my = vertically averaged
cm———e———— P - SPT blow count, corr'd.
1117171177/ /1117717 = 25 bpf

D=5'  ///////7///7/17/177/7/7/

allowable p = 1"

(a) BEST ESTIMTE (MEAN) OF SETTLEMENT

11 bpf

= 11/25 = 0.44

. (209, (2B 2 1 2.3, (2010,2 1
m, = (;NJ) (E5)? v -com = (23 (E0)° n- 55710

= o.720"

my' = my, n,

= (1.46)(0-”') = 1-02.

(b) UNCERTAINTY (VARIANCE) OF SETTLEMENT

Spatial variability

from B}n. 35' Qp & QmN
. /V{N] /VIN]/2 VY1122
8p = oy = ny my 25

Vo= (0, m)2 = [(0.32)(0.707))2 =

Vor = (2p mpe)2 = [(0.32)(1.027))2 =

(0.

in which b = model bias correction as in Bjuation 53

0.32

22")2

(0.32")2
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PLATE 6

Page 2/3

SUBJECT: Calculation of footing settlement on sand.

( {b) UNCERTAINTY (VARIANCE) OF SETTLEMENT )

Systematic Error

Statistical Estimation Error:

Model Bias: Vp ’

{c) RELIABILITY INDEX

Q2 = QN2/n = (0.32)2 /50 = (0.05)2

Q = Omy = (0.05)2
Vo = (2 my)2 = [(0.05)(0.7))2

= Vg m‘,2 + IIlB2 Vo

= (1.32)2 (0.70")2 + (1.46)2(0+31 x 0.70")2

= 0.85 + 0.10 = (0.98)2

Spatial variability Alone

70" - 1"|

B = E.ﬂ_-__go- lo.

Sp

0.22" 1.36

(0.04)2

(0.05)2
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PLATE 6 Page 3/3

SUBJECT: Calculation of footing settlement on sand.

B Spatial Variability + Systematic Error

Total uncertainty = spatial variability + systematic error
RN Vo = (0.22)2 + (0.04)2 = (0.23)2

Vot = (0.32)2 + (0.05)2 + (0.98)2 = (1.0)2

oot without model uncertainty:

LA L] L]
e - PO =-my 1.0" =« 0.7 -
Bo 5 0.23" 130

with model uncertainty:

“{'P’ - Mat= - 1.0" = 1.02" = .
Bp* —ﬂ—bsp. PPEL -0.09

L)
o0 102
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PLATE 7 Page 1/2

SUBJECT: One dimensional consolidation settlement.

SITE CONDITIONS: The site lies on the eastern shore of San Francisco Bay

where in recent years a uniform layer of cohesionless fill
i has been placed over Bay Mud . The Bay Mud systematically
;ﬁ;. varies in thickness across the site, and is presumed to be
b free draining at both top and bottom. A large number of
consgsolidation tests were performed on samples of Bay Mud
R from the site.

Sy PROBLEM: Calculate 1-D final consolidation settlement under a 2m surcharge.

N {a) BEST ESTIMATE (MEAN) SETTLEMENT

@ !

iy

éj}" n

»::::: p = f Hi { log({ovm'/dvo')*Ce,r + 1log(ovf/oym')Ce,c }

Hj Hj
-l,:‘,;.. layer log Acy' log Adgy'
.::::. 2222222222222 2 stress *Ce,r *Ce,c

o
:‘t:: - . « O O'vm' 1 0.035 -

A - « ® 2 0.034 0.023

> - ® o 3 0.007 0.110
;:»;v - d ® . 4 - 0.151
':!;':, - e [ ] . 5 ket 00128
-;»‘;.“ - o °o . 6 - 0.112
00 - t o . 7 - 0.100

Lo - h * . 8 - 0.09
( I - - ° . 9 - 0.083
ReA -- o . 10 - 0.076
B0 °o . 1 - 0.070
gb; [/17177/17117777/ Ovo' Ovt'

,vﬁt‘ mp = 1.02m

.i‘

L The first column in the table gives layer number in a vertical profile;
vy the second gives layer deformation due to recompression from oys' to a
f:ﬁ Oyf' less than oyp', or to oyp' ;+ the third gives layer deformation due
.::,a, to virgin compression from oyo' to a oyf' greater than oyp', or from
s Tk

X Oym' to Oyg'.
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PLATE 7 Page 2/2
,~;;;

I
J SUBJECT: One dimensional consolidation settlement.

X (b) UNCERTAINTY (VARIANCE) OF SETTLEMENT
N H;2x10™%

4 1
s Spatial variability, Vy: layer log2Aay’ log2Acy'
¢ . VICe'r] v[CS,c]

A

J
The second and third 1 0.616 -

o columns, respectively, show 2 0.581 0.70
‘fs;z the variances of individual 3 0.246 1.61
R layer deformations due to 4 - 2.98
g uncertainties in soil 5 - 2.19

parameters. The sum of the 6 - 1.68

L layer variances is the 7 - 1.34
':e::: total variance in 8 - 1.10
.:I:a'; settlement prediction. 9 - 0.91
Ll 10 - 0.77
th 1 - 0.66
o Vilpl = 1.54x1073m?
Q'.“ﬁ; SR P IR WM

U
i Uncertainty in oyy':
=
S
e 3 3
. Vip) = I (30/30ym’ )2 Vieyn') = I ((Hi/oym')(Ce,r=Ce,c))? Vioyn')
et i=1 i=
..'t:

s
‘:2:;; = 1.28 x 10~3m?
;':_-:: Statistical Error, Vj3:

LS
LR
I Q142(Cg,,) = 0.128
Rl .’

o Q3(C¢,s) = (0.128)/(/n=32) = 0.023 = Q3(p)

- nE

il L]

R V3(p) = [Q3(p) E(p)]2 = [(0.023)(1.02")]2 = 0.55 x 10~3m2

| = Variance Composition:

‘x::‘_ component: contribution:

'g: spatial variability 1.5+ x10=3

Do uncertainty in oyp' 1.28 x10=3

KA statistical error 0.55 x10-3

On -

A TOTAL Variance = 3.37 x10~3m2

ey s, = 0.058m

B Qp = 0.058/1.02 = 0.079
::i‘:. mmem
z‘:‘;‘

"y

B ‘b‘
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LOW E [F1,LOW SDLF)

HIGH E (F1 ,HIGH SD CF1

PROBABILITY DENSITY

1 L L
1.0 15 2.0 2.5
FACTOR OF SAFETY , F

PROBABILITY
THAT F <10

SHOWN BY
RESPECTIVE AREAS

Figure 28. Comparison of Two Calculations of Factor of safety.
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NOMINAL PROBABILITY OF FAILURE , Pg (%)

Figure 29.

60

40.

20

of -
8r ]
6- -
o -
al -
S -
2r -
- .
3 -

08 -

osF :

o4} .

0.2 2 2 2. 2 0 2 2 023 0 220230 202
0 | 2 3 4

RELIABILITY INDEX ,B=ECLFJ1-10
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Based on Normal Distribution.
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VERTICAL LOAD

unstable region

2o
-

e HORIZONTAL LOAD

Figure 30. Load Path Dependence of Factor of Safety and Reliability
Index
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DILATION i

SLOPE

SLOPE ANGLE, ©

Figure 31. Non-invariance of Factor of Safety and Reliability Index
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Figure 32, Consistent Factors of Safety Based on Equal Reliability
Indices
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Figure 33. Horizontal Autocorrelation for SPT Blow Count Data.
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Figure 34. Range of Settlement Predictions Compared with Observations.
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PART V: RISK ANALYSIS

This final part of the report touches briefly on the concept of risk
analysis. The intent of Part V is to describe the risk analysis approach to
design and to show its relationship to the error analysis procedure presented
in previous sections of the report.

Throughout the report, the notion of probabilities has been avoided. To
perform an error analysis and to calculate a reliability index g8 for some
design, no assumptions were necessary on probabilities, probability
distributions, and so on. The only probabilistic assumption that was needed
was that uncertainty could be expressed by a standard deviation. For risk
analysis this convenient state of affairs is no longer true. Numerical values

of probability are needed to calculate risk costs.

Risk Analysis Defined

Risk analysis is a quantitative approcach to balancing design conservatism
against the possible consequences and likelihood of adverse facility
performance. Of necessity, risk analysis deals with two sides of the design
problem. On the one hand it seeks to quantify, usually in numerical
probabilities, the likelihhod of adverse performance as a function of design
decisions. On the other hand it seeks to quantify, usually in monetary values,
the costs associated with adverse performance should a facility not perform as
predicted.

Risk analysis attempts to balance the direct costs of constructing a
facility against possible costs associated with failure. Typically, the more
conservative a design is made, the greater the initial cost but the greater the

confidence that the facility will perform satisfactorily.
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Conversely, the less conservative, the less the initial cost but the lower the

y - o w -

confidence in satisfactory performance. In this example, if a design is too
conservative, high initial costs are incurred unnecessarily; but if a design is

too unconservative, the potential for failures is unacceptable. Risk analysis

R

intends to provide quantitative guidance in striking a balance between cost and

risk.

X Practical Implications of the Reliability Index 8

Error analysis is a systematic procedure to account for potential errors
é in engineering calculations. It leads to a best estimate prediction of
engineering performance, and to a measure of the confidence that should be

Placed in the prediction. This measure of confidence is the standard deviation

?f of the possible magnitude of error in the calculation lending to the
prediction. The best estimate and standard deviation are combined via Egn. 41
¥ into a single index, B summarizing the reliability of the prediction in light
i of a specific design standard or failure criterion. The reliability index B8

; summarizes the confidence one has that the calculation has not erroneously led
to a prediction of satisfactory performance.

In a simple way, the question of predicted performance vs real performance
o can be summarized in the Table 5. The horizontal division shows how the
facility actually performs. The vertical division shows what the engineering
calculation predicts. The four boxes are the possible combinations of real and

predicted performance.

=

From a practical view, whenever the calculation indicate unsatisfactory

performance, either the design or the method of calculation is changed. Thus,

e e A~
Ty T

the first row in which the calculations indicate satisfactory performance is of
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most concern. In Box 1 at the upper left the calculations correctly indicate
satisfactory performance. 1In Box 2 at the upper right they incorrectly
indicate satisfactory performance. The former leads to an acceptable design.
The latter leads to failure. For a calculation that indicates satisfactory
performance, the reliability index 8 expresses the confidence of lying in Box 1
rather than Box 2. In the jargon of statistical hypothesis testing, the
reliability index B expresses the confidence that a type II error has not been
made. A type II error is made when an hypothesis=--in this case the hypothesis

that the facility will have satisfactory performance--is accepted incorrectly.

Probability of Unsatisfactory Performance

Most risk analysis requires numerical values for the probability of
adverse performance of a facility. To calculate a numerical value of
probability from the reliability index B some assumption is needed on the
probability distribution of possible uncertainties or errors. The probability
distribution is a mathematical equation which has the property that areas under
its curve within some interval of values equals the probability that the
uncertain quantity in question lies within that interval. For example, in Fig.
35 the probability that the uncertain quantity x is less than x, equals the
crosshatched area under the probability distribution. The probability that x
lies in the interval between my and (my + Syx) equals the stippled area. Since
X must lie somewhere, the total area under the probability distribution equals
1.0

A convenient and often reasonable assumption is that the probability
distribution has the bell-shaped form of the Normal distribution (Fig. 36).

Empirically, the Normal distribution is often observed to model geotechnical
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data well, and mathematical theory suggests that many types of errors are well
represented by Normal distributions.

The difficulty with adopting any particular mathematical function to model
the distribution of probability in geotechnical problems is that too few data
often exist by which to verify that the chosen distribution provides a good
fit, particularly in the outer tails. The Normal distribution is adopted
because it is convenient and because it has been found to fit most geotechnical
data as well as other common distribution functions do. Actually, the areas
under many common distribution functions-~for example, the lower part of Figure
36 which shows areas under the Normal curve--are much the same within 2 to 3
standard deviations of the mean, and so within this region little error is made
by adopting the Normal distribution. Figure 37 shows the areas under the lower
tails (i.e., probabilities of failure) of Normal, logNormal, and Gamma
distributions as a function of mean factor of safety (F) and coefficient of
variation of F. They are quite similar for Q's up to 0.2 and probabilities of
failure down to 0.01. Nevertheless, to emphasize that the probabilities being
calculated are based on a presumed shape for the probability distribution, it

is sometimes convenient to refer to them as "nominal probabilities."

Risk Cost
While the concept of direct construction costs is familiar, the concept of
risk cost is not. It is generally analogous to the cost of liability and
casualty insurance. Since the government self-insures, this principle has not
often been considered in the past, yet it is a real cost. In a qualitative
sense, the greater the likelihood of unsatisfactory performance and the greater

the associated consequences of that performance, the greater the risk cost.
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The most common quantitative measure of (economic) risk cost is the product of
the probability of unsatisfactory performance times the dollar value of the

consequences associated with unsatisfactory performance,

Cr = Pg « Cg , (56)

in which C, = risk cost, Pg = probability of "failure," and Cg = dollar cost
agsociated with failure. For example, if the probability of a shallow footing
settling excessively were 0,05 and the cost associated with that settlement
were $1000, the risk cost would be C, = (0.05)($1000), or $50. In principle,
reducing that risk through more conservative design would be worth no more than
the §50.

The risk cost of Byn. 56 is a convenient quantitative measure of risk for
comparing design alternatives, but it has two important drawbacks. The first
is that it does not include non-monetary consequences of inadequate
performance, for example, health and safety consequences. Second, it equates a
small probability of a large consequence with a moderate probability of a more
modest consequence, something many people are not comfortable doing. Each of
these issues is outside the scope of the present report. Oonsiderations of
non-monetary consequence in risk analysis, particularly loss of life, are
discussed by Mishan (1976). The considerations are the same for risk analysis
and cost-benefit analysis. Considerations on the question of low=probability
high=-consequence failures are discussed by Raiffa (1964). These, too, arise in

many areas of policy analysis.

Optimal Design

Optimal design means a balancing between direct cost and risk cost. As

the conservatism of design increases, as for example by increasing the factor
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) of safety, direct cost also typically increasegs. At the same time, however,
) the probability of unsatisfactory performance and hence the risk cost declines.

The total cost, which is the sum of these two,

Ctotal = Cdirect * Crisk (57)

reaches a minimum somewhere along the way (Fig. 38). From a monetary risk
0 viewpoint, this point of least total cost is the optimal design. Plate 8
fﬁ illustrates the result of a risk assessment of the embankment design of Plate

4.

value of Information

ot Risk analysis can also be used to assess the value of information to a

5§ geotechnical design. Increased information reduces the uncertainty in a

prediction of engineering performance, and by so doing reduces the probability

of unsatisfactory behavior and thus risk cost. This is shown schematically in

Fig. 38. 1Increasing the amount of information about site conditions or about

" measurement or model biases lowers the risk-cost for a given value of the
design factor of safety. It does so by reducing statistical error and by

o reducing calibration errors in testing.

X The value of additional information can be calculated by comparing the

total cost curves with and without the new information. 1In a situation where
v health and safety are not considerations, the difference in optional cost is
o, the maximum amount one should be willing to pay for the new information.
Detailed discussion of value-of-information calculations for geotechnical
engineering problems is outside the scope of this report. A introductory

. presentation of general principles is given by Raiffa (1964), and a more
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detailed application to geotechnical data collection for underground

R I

construction is given by Einstein, et al. (1978).
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ACCEPTABLE

UNACCEPTABLE

Table 5.

Actual Performance

ACCEPTABLE UNACCEPTABLE
acceptable failure
design
<redesign or|reanalyze>

Hypothesis of Adequate Performance.
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PLATE 8

SUBJECT: Optimization of factor of safety for embankment stability

PROBLEM: Determine design factor of safety which balances marginal
changes in direct cost and in risk cost for the analysis of

Plate 4.

SOLUTION: Construction Cost: Based on engineering cost estimates,

Cc = 1n(l + 1.146 F)

in which C; is direct cost in dollars, and
P is the design factor of safety.

Risk Cost: Based on Bjyn. 56,
Cr = Pg Cf
Assume upper and lower bound costs of
Cet = $109

Cg™ = $109

Nominal probabilities of failure based on Fig. 29 and
calculations of Plate 4 and extensions to other F's,

Result: Cost model: Co =M (1+1146F)
10
N\ 10® 0% |
Vo
8t -.\ \\ \
P.-C \-C
7H FleT TOTAL
= oL \ \ ]
p . \ \ //
sk AN
) L NSy
= .k | ~Tier
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probability density
distribution

PROBABILITY DENSITY

BRI

area =
probabiliy

UNCERTAIN VARIABLE

Ha

Figure 35. Probability Distribution, Schematic.
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Figure 36. Normal Probability Distribution
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Figure 38, Optimal Design.
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Appendix A -- SYMBOL LIST

regression coefficients

constant

measureament bias correction coefficient
footing width

cost of failure

risk cost

autocovariance function for separation distance §
covariance of x and y

covariance matrix

virgin compression ratio

recompression ratio

undrained strength

embedment depth of footing

geometric properties of scatter graph
random measurement error

cumulative frequency of observation i
elastic modulus

factor of safety

field vane .

matrix of derivatives with ijth element dyj /dxy
deterministic function of x

horizontal load

geometric properties of scatter graph
stratum thickness

SHANSEP strength parameter

dilation angle

counter number

mean of x
number of measurements
length

likxelihood of z

vertical compression coefficient

SPT blow count

bearing capacity factor
overconsolidation ratio

probability of bearing capacity failure
probability of failure

probability of excessive settlement
probability of

SHANSEP strength parameter

applied footing stress

design stress

bearing capacity

correlation coefficient of xy
autocorrelation distance, C, (ry)=1/e
size effect factor

autocorrelation function over separation distance §
standard deviation of x
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Appendix A -~ SYMBOL LIST
(continued)

Student's t statistic

trend

residual variation about regression line
vertical load

variance of x

range of x

soil property

vector of data Xq,.s.,Xp

ith measurement of property x, or x at location i
largest value of x

smallest value of x

25th fractile of x

50th fractile of x

75th fractile of x

predicted performance variable

design specification on variable y
measured soil property, depth

critical probability level
reliability index

vector of regression coefficients
80il density

separation distance
autocorrelation distance

strain

point of expansion in Taylor's series
slope angle

Bjerrum's FV correction factor
degrees of freedom

settlement

stress

maximum past pressure

effective vertical stress

final consolidation stress
effective stress friction angle
coefficient of variation

outlier test statistic

A2







